
Operating Systems 2016/17
Assignment 4

Prof. Dr. Frank Bellosa
Dipl.-Inform. Marc Rittinghaus

Submission Deadline: Monday, November 21th, 2016 – 23:59

A new assignment will be published every week, right after the last one was due. It
must be completed before its submission deadline.

The assignments must be filled out online in ILIAS. Handwritten solutions are no
longer accepted. You will find the online version for each assignment in your tutorial’s
directory. P-Questions are programming assignments. Download the provided tem-
plate from ILIAS. Do not fiddle with the compiler flags. Submission instructions can
be found on the first assignment.

In this assignment you will get familiar with the pthread library.

T-Question 4.1: Processes and Threads

a. A process creates a new kernel level thread. Name at least two structures in me-
mory and one operation that the kernel needs to allocate or perform until the CPU
executes the new thread. For each structure, denote if they are placed in kernel or
user space. 2 T-pt

b. What command could you use in Linux to list the threads of a certain process? 1 T-pt

c. A process creates two threads T1 and T2. When T1 executes a recursive function,
the process crashes with a stack overflow error. When instead T2 executes the
same function, the exception does not occur. What might be the reason? 1 T-pt

d. Describe how dynamic shared libraries can be loaded at any virtual address. 2 T-pt

1

P-Question 4.1: Worker Pool
Download the template p1 for this assignment from ILIAS. You may only modify
and upload the file workerpool.c.

Threads allow an application to perform tasks asynchronously and in parallel to
other jobs (e.g., process a web request in a web server). However, spawning a new,
dedicated thread for every task introduces considerable time and memory over-
head. This is especially the case if tasks are short. Hence, in practice, it is better to
create a (fixed) pool of worker threads that receive work from a work queue, execute
it, and then return to the queue for more work. If the queue is empty, the threads
block and wait until new jobs appear.

In this question you will build a simple worker pool with the help of pthreads. Jobs
are expressed by providing a function pointer (WorkFunc) and an integer argument.
Use assert() or explicit error handling where appropriate!

a. The work queue in this question will be build with a ring buffer of a fixed size
(MAX JOBS). The template already contains the necessary structures to represent
the buffer (workItems) and tasks (WorkItem). The variable nextJob holds the index
of the next valid task (if any) within the buffer. The variable numJobs provides the
number of jobs in the buffer. It may not exceed MAX JOBS. Implement the functions
to add and remove jobs. Use the following guideline: 3 P-pt

enqueue Adds a new task to the queue’s tail.

• Returns -1 if the queue if full.
• Otherwise, adds the new work item to the tail of the queue by copying it at

the right location into the buffer and updating the variables nextJob and
numJobs if necessary.

• Returns 0 on success.

dequeue Removes an item from the queue’s head.

• Returns -1 if the queue is empty.
• Otherwise, copies the next work item from the queue into the supplied item

argument and updates the variables nextJob and numJobs if necessary.
• Returns 0 on success.

Hints: If the queue is empty numJobs should be 0. nextJob should always point at
the head of the queue (i.e., the next open job), if any.

Head

a)

b) Job Job Job

_nextJob

_nextJob

_numJobs: 3

_numJobs: 0

Tail

Abbildung 1: Example queue of size 5. a) Empty queue b) Queue with 3 open jobs
after 3 jobs have already been pulled.

int _enqueue(WorkFunc func, int arg);
int _dequeue(WorkItem *item);

2

b. A worker pool should be tuned to the resources provided by the hardware. Modify
the initialization of n in initializeWorkerPool() so that the variable holds the
number of available processors. Use the sysconf system call. n should be at least
4, even if less processors are available. 1 P-pt

int initializeWorkerPool(void);

c. Implement the startWorkers() function that creates num worker threads. Your
implementation should satisfy the following requirements: 2 P-pt

• Creates new worker threads, which start execution in workerMain() and re-
ceive their thread number (i.e., 0, 1, 2, 3, etc.) as argument.

• Returns 0 on success, otherwise does not terminate already created threads,
but instead just returns -1. Expect a call to finalizeWorkerPool() in that
case.

Hints: You may define further global variables and initialize them at the marked
position in initializeWorkerPool(). Do not forget to free any additional resources
in finalizeWorkerPool().

int _startWorkers(uint32_t num);

d. Implement the waitForWorkers() function, which waits until all worker threads
have exited. Your implementation should be callable from initializeWorkerPool()

(indirectly) and thus should not expect all data structures and the final number of
worker threads to be created and initialized. 1 P-pt
Hints: The function does not need to wait until all pending work has been proces-
sed. However, it should not forcibly terminate the workers!

void _waitForWorkers(void);

e. Complete the workerMain() function, which is executed by the worker threads.
Your implementation should satisfy the following requirements: 1 P-pt

• Repeatedly calls waitForWork() until the function returns 0.

• Executes each received job, by calling the work items function with the appro-
priate argument.

void* _workerMain(void *arg);

Total:
6T-pt
8P-pt

3

